Lignanoids and Diterpenoids from Callicarpa furfuraceae

by Yong Shao^a), Li-Hong Hu*^a), Keng-Yeow Sim^b), and Swee-Hock Goh^b)

^a) Shanghai Research Center for Traditional Chinese Medicine, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, 189 Guo-Shou-Jing Road, Shanghai 201203, People's Republic of China (fax: 86-21-50800721; e-mail: simmhulh@mail.shcnc.ac.cn)

^b) Chemistry Department, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

The three new lignanoids 1-3 and the five new phyllocladane diterpenoids 7-11 were isolated from the leaves of *Callicarpa furfuraceae*, together with two known lignanoids, lariciresinol (4) and (+)-sesamin (5), and five known diterpenoids, 17-norphyllocladane-3,16-dion (6), calliterpenone (12), calliterpenone 17-acetate (13), (3β , 16\alpha)-phyllocladane-3, 16, 17-triol (14), and (3β , 16\alpha)-phyllocladane-3, 16, 17-triol 17-acetate (15). Their structures were established by spectral-data interpretation.

Introduction. – Plants of the genus *Callicarpa* are known to have medicinal properties, *e.g.*, for the treatment of rheumatism, stomach disorders, and intestinal troubles [1]. Studies on piscicidal constituents have also been reported [2][3]. The Malaysian species *Callicarpa furfuraceae* (Verbenaceae), as a liquid extract, is drunk against colds in folk medicine [4]. We now report the isolation and structural elucidation of the five lignanoids **1–5** and the ten diterpenoids **6–15**. The lignanoids **1–3** and the diterpenoids **7–11** are new¹).

Results and Discussion. – The compounds 4-6 and 12-15 were identified by detailed NMR and MS analyses as lariciresinol (4) [5], (+)-sesamin (5) [6], 17-norphyl-

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

locladane-3,16-dion (6) [7], calliterpenone (12) [8], calliterpenone 17-acetate (13) [8], $(3\beta,16\alpha)$ -phyllocladane-3,16,17-triol (14) [8], and $(3\beta,16\alpha)$ -phyllocladane-3,16,17-triol 17-acetate (15) [8].

Compound **1**, an optically active white amorphous powder, was assigned the molecular formula $C_{20}H_{18}O_7$ on the basis of its HR-EI-MS (*m/z* 370.1046, calc. 370.1053). Its IR spectrum showed absorptions at 3018 (OH), 1605, and 1517 cm⁻¹ (aromatic). The NMR spectra (*Table 1*) were very similar to those of (+)-sesamin (**5**) [6], which allowed to establish the structure of **1** as sesamin-2-ol.

The NMR data of **1** revealed the signals of twelve olefinic C-atoms (two aromatic rings), two dioxygenated CH₂ groups (δ (H) 5.95 (s, 2 H), 5.98 (d, 2 H); δ (C) 101.12, 101.62), two oxygenated CH₂ groups (δ (H) 4.15 (dd, 1 H), 3.89 (dd, 1 H); 4.35 (dd, 1 H), 3.87 (dd, 1 H); δ (C) 70.67, 72.37), two oxygenated CH groups (δ (H) 4.87 (d, 1 H), 4.77 (d, 1 H); δ (C) 86.45, 85.39), and two CH groups (δ (H) 3.20 (m, 1 H), 3.14 (m, 1 H); δ (C) 52.96, 53.43). A *s* at δ 7.75 was assigned to an OH proton. In the HMBC spectrum, the latter showed a cross-peak with C(2) at δ 139.80.

Compound **2** was also obtained as white amorphous powder. The HR-EI-MS (m/z 386.1006) established its molecular formula as $C_{20}H_{18}O_8$, containing one O-atom more than **1**. Only ten signals were observed in its ¹³C-NMR spectrum (*Table 1*) indicating that **2** has a symmetric structure. Comparison of the NMR data with those of compound **1** established the structure of **2** as sesamin-2,2'-diol.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		2		3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\delta(\mathrm{H})^{\mathrm{a}})$	$\delta(C)^{b})$	$\delta(\mathrm{H})^{c})$	$\delta(C)^d)$	$\delta(H)^{c})$	$\delta(C)^d)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)		119.76		124.56		129.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)		139.80		139.43		141.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)		135.12		135.68		137.45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)		148.89		149.01		149.80
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	H–C(5)	6.40 (d, J = 8.2)	100.63	6.39(d, J = 8.2)	100.87	6.54 (d, J = 8.1)	102.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H–C(6)	6.55 (d, J = 8.2)	119.43	6.79 (d, J = 8.2)	119.67	6.89(d, J = 8.2)	119.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{\beta}-C(7)$	4.87 (d, J = 6.5)	86.45	4.96(d, J=4.4)	83.85	5.05 (d, J = 6.6)	80.51
$ \begin{array}{c} H_a-C(9) \text{ or } 4.15 \ (dd, J=9.4, 6.6) \\ CH_2(9) \\ H_\beta-C(9) \\ 3.89 \ (dd, J=9.4, 3.5) \\ CH_2(10) \\ 5.98 \ (d, J=1.4) \\ 101.62 \\ 5.93 \ (d, J=1.3) \\ 102.06 \\ 5.99 \ (br. s) \\ 10 \\ 102.06 \\ 100 \\ 10$	$H_a - C(8)$	3.17-3.22 (<i>m</i> , 1 H)	52.96	3.06–3.11 (<i>m</i> , 1 H)	54.61	2.84(t, J=7.2)	63.06
$\begin{array}{c} \mathrm{CH}_2(9) \\ \mathrm{H}_\beta-\mathrm{C}(9) & 3.89 \ (dd, J\!=\!9.4, 3.5) & 3.98 \ (dd, J\!=\!9.1, 3.8) \\ \mathrm{CH}_2(10) & 5.98 \ (d, J\!=\!1.4) & 101.62 & 5.93 \ (d, J\!=\!1.3) & 102.06 & 5.99 \ (\mathrm{br.}\ s) & 10 \\ \mathrm{C}(1') & 134.59 & 12 \\ \mathrm{H-C}(2') & 6.83 \ (s) & 106.51 & 14 \\ \mathrm{C}(3') & 147.21 & 13 \\ \mathrm{C}(4') & 148.15 & 14 \\ \mathrm{H-C}(5') & 5.78 \ (s) & 108.24 & 6.37 \ (d, J\!=\!7.9) & 10 \\ \mathrm{H-C}(6') & 6.78 \ (s) & 119.33 & 6.86 \ (d, J\!=\!8.2) & 12 \\ \mathrm{H}_\beta-\mathrm{C}(7') & 4.77 \ (d, J\!=\!4.6) & 85.39 & 5.01 \ (d, J\!=\!7.5) & 8 \\ \mathrm{H}_a-\mathrm{C}(8') & 3.09-3.15 \ (m, 1\mathrm{H}) & 53.43 & 3.20-3.25 \ (m, 1\mathrm{H}) & 5 \\ \mathrm{H}_a-\mathrm{C}(9') & 4.35 \ (dd, J\!=\!9.4, 7.4) & 72.37 & 4.13 \ (dd, J\!=\!8.9, 4.8) & 7 \\ \mathrm{H}_\beta-\mathrm{C}(9') & 3.87 \ (dd, J\!=\!9.4, 5.3) & 4.06 \ (d, J\!=\!8.9) \\ \mathrm{CH}_1(4') & 5.96 \ (c) & 5.96 \ (c) & 100.12 & 5.96 \ (c) & 5.96 \ (c) & 100.12 \\ \end{array}$	$H_a - C(9)$ or	4.15 (<i>dd</i> , <i>J</i> =9.4, 6.6)	70.67	4.29 (dd, J=9.1, 6.9)	72.83	5.77 (s)	103.12
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CH ₂ (9)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{\beta}-C(9)$	3.89 (dd, J = 9.4, 3.5)		3.98 (dd, J = 9.1, 3.8)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_{2}(10)$	5.98(d, J=1.4)	101.62	5.93 (d, J=1.3)	102.06	5.99 (br. s)	102.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1')		134.59				124.64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H–C(2′)	6.83 (s)	106.51				140.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3')		147.21				136.24
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C(4′)		148.15				149.56
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	H–C(5′)	5.78 (s)	108.24			6.37 (d, J = 7.9)	100.64
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	H–C(6′)	6.78 (s)	119.33			6.86(d, J = 8.2)	122.42
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$H_{\beta}-C(7')$	4.77 (d, J = 4.6)	85.39			5.01 (d, J = 7.5)	87.16
$ \begin{array}{ll} H_{a}-C(9') & 4.35 \ (dd, J=9.4, 7.4) & 72.37 \\ H_{\beta}-C(9') & 3.87 \ (dd, J=9.4, 5.3) \\ \end{array} $	$H_a - C(8')$	3.09–3.15 (<i>m</i> , 1 H)	53.43			3.20-3.25 (<i>m</i> , 1H)	51.94
$H_{\beta}-C(9) \qquad 3.87 (dd, J=9.4, 5.3) \qquad \qquad 4.06 (d, J=8.9)$	$H_a - C(9')$	4.35 (<i>dd</i> , <i>J</i> =9.4, 7.4)	72.37			4.13 (<i>dd</i> , <i>J</i> = 8.9, 4.8)	72.56
$CII(10) = 5.05(-)$ 10112 $5.02(h_{\pi}) = 10$	$H_{\beta}-C(9')$	3.87 (dd, J = 9.4, 5.3)				4.06(d, J=8.9)	
$CH_2(10) = 5.95 (8) = 101.12 = 5.95 (01.8) = 101.12$	CH ₂ (10')	5.95 (s)	101.12			5.93 (br. s)	102.05
OH-C(2) 7.75 (s) $6.38 (s)$ $8.00 (s)$	OH–C(2)	7.75(s)		6.38 (s)		8.00 (s)	
OH–C(2') 8.00 (s)	OH–C(2′)					8.00 (s)	
MeO-C(9) 4.02 (s) 5	MeO-C(9)					4.02 (s)	59.84

Table 1. ¹*H*- and ¹³*C*-*NMR* Data for Compounds $1-3^{1}$). δ in ppm, J in Hz.

Compound **3** was isolated as colorless oil. The HR-EI-MS (m/z 416.1079) showed a molecular ion compatible with the formula $C_{21}H_{20}O_9$, *i.e.*, **3** contains one O-atom and one CH₂ group more than **2**. The salient difference between the NMR data (*Table 1*) of **3** and **2** were the signals for the furofurane moiety. The structure of compound **3** was determined as (9α)-**9**-methoxysesamin-2,2'-diol.

In the NMR spectra of **3**, the signals of $CH_2(9)^1$) of **2** (δ (H) 4.29 (dd, 1 H), 3.98 (dd, 1 H); δ (C) 72.83) were replaced by those of a MeO–CH(9) moiety (δ (H) 4.02 (s, MeO), 5.77 (s, 1 H); δ (C) 59.84, 103.12). The 2D-NOESY experiment, which revealed the correlations H–C(9)/H–C(7) and H–C(7'), established the α -configuration of MeO–C(9).

Compound 7 was isolated as oil. The HR-EI-MS (m/z 300.2112) established a molecular formula $C_{20}H_{28}O_2$, which indicated the degree of unsaturation as seven double-bond equivalents. The maximum absorption at 232 nm in the UV spectrum suggested the presence of a conjugated carbonyl group. Detailed analysis of the ¹H- and

^a) Recorded in CDCl₃ at 500 MHz. ^b) Recorded in CDCl₃ at 125 MHz. ^c) Recorded in (D_6)acetone at 500 MHz. ^d) Recorded in (D_6)acetone at 125 MHz.

¹³C-NMR (*Table 2*), ¹H, ¹H-COSY, HMQC, HMBC, and NOESY data and comparison with those of calliterpenone (**12**) [8][9] allowed to assign to **7** the structure of phylloclad-15-en-3,17-dione.

Three tertiary Me groups at δ 1.10, 1.07, and 0.93 were observed in the ¹H-NMR spectrum of **7**. All 20 C-atoms of the molecular formula, including 3 Me, 7 CH₂, 4 CH, and 5 quaternary C-atoms, appeared in the ¹³C-NMR spectrum. One carbonyl group (δ (C): 216.62), one aldehyde group (δ (H) 9.76; δ (C) 189.65), and one trisubstituted C=C bond (δ (H) 6.88; δ (C): 155.57 and 147.35) accounted for three degrees of unsaturation in 7, and the remaining four degrees of unsaturation were assumed to indicate the presence of four rings. Analysis of the ¹H,¹H-COSY, HMQC (Fig. 1), and HMBC data permitted the establishment of three structural fragments a (C(1) to C(3) and C(18) to C(19)), b (C(6) to C(7) and C(11) to C(12)), and c (C(15) to C(17), drawn with bold bonds in Fig. 1. In the HMBC spectrum, the correlations Me(18)/C(3), C(4), and C(5), and the correlations CH(5)/C(4), C(7), C(18), and C(19) were observed, indicating that the partial structures a and b were also connected via CH(5) (δ (H) ca. 1.40; δ (C) 55.52). The connectivity between CH₂(7) and CH(15) via C(8) were established by the correlations CH₂(6)/C(8) and CH₂(7)/C(15); the correlations CH(12)/C(13), CH(17)/C(16), CH(17)/C(13), $CH_2(11)/C(9)$, and CH(9)/C(8) indicated that the partial structures b and c were connected via CH(13) and CH(9). The correlations Me(20)/C(1), C(5), C(9), and C(10), and the correlations CH₂(2)/ C(10) indicated that $CH_2(1)$, CH(5), and C(9) were connected via the quaternary C(10), which bears the Me(20) group. The correlations Me(18)/C(3) and Me(19)/C(3) were indicative of a linkage between C(3) and C(4); the correlations of $CH_2(12)/C(14)$ and CH(15)/C(14) also implied that C(8) and CH(13) were connected via CH₂(14). In the NOESY plot, the correlation Me(20)/Me(19) indicated that Me(20) and Me(19) were on the same side, and the correlations $H-C(5)/H_a-C(1)$, H-C(9), and Me(18) indicated that H-C(5), $H_a-C(1)$, H-C(9), and Me(18) were all on the same side. Hence, H-C(5) and H-C(9) were assumed to be in α -orientation as those of calliterpenone (12) [8][9].

Fig. 1. Selected HMBC correlations for compound 7

Compound **8** was isolated as a white amorphous powder. Its molecular formula was established as $C_{20}H_{32}O_3$ by HR-EI-MS (m/z 320.2334, calc. 320.2351). The NMR spectra (*Table 2*) were very similar to those of (3β ,16 α)-phyllocladane-3,16,17-triol (**14**) [8], with the exception of signals for a COOH and CH group instead of a 16-(hydroxymethyl)group and an oxygenated quaternary C-atom. The structure of **8** was identified as (3β ,16 α)-3-hydroxyphyllocladane-17-oic acid.

A *dd* at δ 2.59 was assigned to H–C(16), which was correlated with C(12), C(13), and C(14) in the HMBC spectrum. HMBC correlations between H–C(16) and H_b–C(15) (δ *ca.* 1.45), and COOH revealed that the COOH group was located at C(16). The relative configuration at C(16) was established by the 2D-NOESY data. An NOE interaction between H–C(16) and H_β–C(11) allowed to locate the COOH group on the α side.

Compound **9** was isolated as white amorphous powder and exhibited the typical spectral features (see *Table 2*) of a phyllocladane derivative. Its HR-EI-MS established

	7		8		9	
	$\overline{\delta(\mathrm{H})^{\mathrm{a}})}$	$\delta(C)^{b})$	$\delta(\mathrm{H})^{\mathrm{c}})$	$\delta(C)^d)$	$\delta(\mathrm{H})^{c})$	$\delta(C)^d)$
H_a -C(1)	1.36–1.43 (<i>m</i> , 1 H)	37.42	0.91–0.96 (<i>m</i> , 1 H)	39.16	1.43–1.50 (<i>m</i> , 1 H)	37.74
$H_{\beta}-C(1)$	1.86–1.93 (<i>m</i> , 1 H)		1.73 (dt, J = 10.6, 3.7)		1.86–1.95 (<i>m</i> , 1 H)	
$H_a - C(2)$ or	2.33 (ddd, J = 18.4,	34.31	2.26–2.37 (<i>m</i> , 1 H)	27.82	2.37–2.45 (<i>m</i> , 1 H)	36.47
$CH_2(2)$	7.6, 4.3)					
H_{β} –C(2)	2.56 (<i>ddd</i> , <i>J</i> =18.4, 10.8, 7.3)		2.53–2.59 (<i>m</i> , 1 H)			
C(3) or H_a –C(3)		216.62	3.14 (<i>dd</i> , <i>J</i> =11.6, 4.8)	79.69		219.81
C(4)		47.61		39.92		53.53
H_{α} –C(5)	1.36–1.43 (<i>m</i> , 1 H)	55.52	0.81 (<i>dd</i> , <i>J</i> = 11.6, 1.4)	57.07	1.99 (dd , $J = 11.7$, 1.4)	48.46
$CH_2(6)$ or H -C(6)	1.53–1.64 (<i>m</i> , 2 H)	20.85	1.31–1.38 (<i>m</i> , 1 H)	21.19	1.59–1.67 (<i>m</i> , 1 H)	22.20
$H_a = C(6)$			1.52 - 1.58 (m, 1 H)		1.36 - 1.43 (m, 1 H)	
$H_{-}C(7)$ or	1.36–1.43 (<i>m</i> , 1 H)	35.58	1.50 - 1.54 (m, 1 H)	41.94	1.66 - 1.71 (m, 1 H)	41.59
$CH_2(7)$, , , ,	
$H_{\beta}-C(7)$	1.86–1.93 (<i>m</i> , 1 H)					
C(8)		49.46		45.71		44.63
H_{α} –C(9)	1.25–1.33 (<i>m</i> , 1 H)	52.98	1.00 (<i>dd</i> , <i>J</i> = 11.2, 4.3)	58.00	1.27 (dd , $J = 10.8$, 6.0)	56.89
C(10)		36.96		38.69		37.81
$H_{a} - C(11)$	1.53–1.64 (<i>m</i> , 1 H)	19.14	1.52–1.58 (<i>m</i> , 1 H)	20.47	1.59–1.67 (<i>m</i> , 1 H)	20.91
H_{β} -C(11)	1.17–1.21 (<i>m</i> , 1 H)		1.31–1.38 (<i>m</i> , 1 H)		1.36–1.43 (<i>m</i> , 1 H)	
$H_{q}^{p} - C(12)$	1.53–1.64 (<i>m</i> , 1 H)	24.43	1.43–1.48 (<i>m</i> , 1 H)	33.31	1.43–1.50 (<i>m</i> , 1 H)	27.85
$H_{\beta}-C(12)$	1.46–1.52 (<i>m</i> , 1 H)		1.59–1.65 (m, 1 H)		1.72–1.77 (<i>m</i> , 1 H)	
$H_{\beta}-C(13)$	2.90–2.95 (<i>m</i> , 1 H)	36.96	2.26–2.37 (<i>m</i> , 1 H)	41.04	1.86–1.95 (<i>m</i> , 1 H)	45.00
$H_a - C(14)$	1.86–1.93 (<i>m</i> , 1 H)	53.65	1.05 (dd, J = 12.3, 3.2)	49.83	1.10 (d, J = 10.9)	49.53
$H_{\beta}-C(14)$	1.25–1.33 (<i>m</i> , 1 H)		1.59–1.65 (<i>m</i> , 1 H)		2.10–2.15 (<i>m</i> , 1 H)	
H–C(15) or	6.88 (s)	155.57	2.33 (<i>ddd</i> , <i>J</i> =13.5, 9.4,	37.95	2.08 (d, J = 14.4),	45.20
CH ₂ (15)			2.1),		1.23 (d, J = 14.4)	
			1.43–1.48 (<i>m</i> , 1 H)			
C(16) or		147.35	2.59 (dd, J = 9.0, 5.6)	49.63		85.59
H–C(16)						
H–C(17), C(17),	9.76 (s)	189.65		181.41	3.70 (d, J = 14.2),	66.17
or CH ₂ (17)					3.59(d, J = 14.2)	
Me(18) or	1.07(s)	21.87	0.78(s)	16.46	3.59 (d, J = 11.2),	68.08
CH ₂ (18)					3.33 (d, J = 11.2)	
Me(19)	1.10 (s)	26.14	0.97 (s)	28.93	0.90(s)	18.07
Me(20)	0.93 (s)	15.07	0.97 (s)	15.67	1.09(s)	15.34

Table 2. ¹*H*- and ¹³*C*-*NMR* Data for Compounds **7**–**9**. δ in ppm, J in Hz.

^a) Recorded in CDCl₃ at 500 MHz. ^b) Recorded in CDCl₃ at 125 MHz. ^c) Recorded in CD₃OD at 500 MHz. ^d) Recorded in CD₃OD at 125 MHz.

a molecular formula $C_{20}H_{32}O_4$ (*m/z* 336.2357, calc. 336.2301). The structure of **9** was established as (16 α)-16,17,19-trihydroxyphyllocladan-3-one.

The NMR data of **9** revealed the presence of one carbonyl (δ (C) 219.81) and two CH₂OH groups (δ (H) 3.70 (d, 1 H), 3.59 (d, 2 H), 3.33 (d, 1 H); δ (C) 68.07, 66.17). Comparison of the NMR data with those of calliterpenone (**12**) [8] [9] suggested that one of three tertiary Me groups of calliterpenone was replaced by a CH₂OH group in **9**. The HMBC data allowed to place one of the two CH₂OH groups (δ (H) 3.70, 3.59; δ (C) 66.17) at C(16), and the other (δ (H) 3.59, 3.33; δ (C) 68.07) at C(4). The following cross-peaks were observed: CH₂(17)/C(13), C(15), and C(16), and CH₂(18)/C(3), C(4), and C(5). An NOE interaction between Me(19) and Me(20) established that the hydroxymethyl group was assigned to C(18) and was on the α side.

Compound **10** was obtained as white amorphous powder. Its IR spectrum showed the presence of OH groups (3504, 3413 cm⁻¹) and a carboxylic acid (3000–2500 (br.), 1719 cm⁻¹). The molecular formula was determined as $C_{20}H_{34}O_5$ by HR-ESI-MS ($[M+H]^+$ at m/z 355.2485, calc. 355.2484). Its spectral data (*Table 3*) and comparison with those of calliterpenone (**12**) [8][9] established the structure of **10** as (16 α)-4,16,17-trihydroxy-3,4-secophyllocladan-3-oic acid.

The ¹H-NMR of **10** indicated the presence of three tertiary Me groups (δ 1.06, 1.22, and 1.27) and an oxygenated CH₂ group (δ 3.53 and 3.70). The ¹³C-NMR spectrum revealed 20 C-atoms, which consisted of 3 Me, 9 CH₂, 3 CH, and 5 quaternary C-atoms, two of which were oxygenated quaternary C-atoms at δ 75.51 and 84.34, by DEPT analysis. The NMR data of **10** were very similar to those of calliterpenone (**12**) [8] [9], except for the presence of a carboxylic group at δ 175.93 and the oxygenated quaternary C-atom at δ 75.51 for **10** instead of a carbonyl at δ 216.23 and a quaternary C-atom at δ 46.4 for ring A. As no other unsaturated functions except for the COOH group (δ 175.93) appeared in the ¹H- and ¹³C-NMR spectra, **10** should be a tricyclic structure, which means that ring A was cleaved. In the HMBC spectrum, crosspeaks were observed between H_a-C(1), H_b-C(1), and CH₂(2) and COOH at δ 175.93, and between C(3) and C(4), C(3) being oxidized to the COOH group, and C(4) being the oxygenated quaternary C-atom. NOE Correlations Me(20)/H_β-C(11) and H_a-C(15), as well as H-C(5)/H_a-C(9) established the β -configuration of Me(20) and the α -configuration of H-C(5) (see *Fig. 2*).

Compound **11** was also obtained as white amorphous powder that analyzed for C_{20} - $H_{34}O_5$ by HR-ESI-MS ($[M+H]^+$ at m/z 355.2480, calc. 355.2484). The IR spectrum showed the presence of OH groups (3413 cm⁻¹) and a carboxylic acid (3000–2500 (br.), 1715 cm⁻¹). Comprehensive analysis of the ¹H,¹H-COSY, HMQC, and HMBC indicated that **11** had the same planar structure as **10**, and further spectral data

Fig. 2. Selected NOE correlations for compounds 10 and 11

$\delta(\mathbf{H})^{a}$			
0(11))	$\delta(C)^{b})$	$\delta(\mathrm{H})^{\mathrm{a}})$	$\delta(C)^{b})$
2.36–2.41 (<i>m</i> , 1 H)	34.34	1.68 (ddd, J = 14.6, 11.8, 2.8)	38.58
1.61–1.67 (m, 1 H)		1.49–1.61(<i>m</i> , 1 H)	
2.53 (<i>ddd</i> , <i>J</i> =15.4, 11.5, 4.3)	29.12	2.64 (<i>ddd</i> , <i>J</i> =15.4, 11.8, 3.7)	32.76
2.18 (<i>ddd</i> , <i>J</i> =15.4, 10.6, 5.0)		2.18 (<i>ddd</i> , <i>J</i> =15.4, 7.7, 2.9)	
, ,	175.93		174.56
	75.51		85.67
1.42 - 1.52 (m, 1 H)	52.69	1.81 (dd, J = 11.1, 3.2)	54.79
1.38–1.43 (m, 1 H)	25.06	1.49–1.61 (<i>m</i> , 2 H)	25.45
1.42–1.52 (m, 1 H)			
1.55–1.61 (m, 1 H)	41.76	1.49–1.61 (<i>m</i> , 1 H)	41.21
1.42–1.52 (m, 1 H)			
	44.45		44.45
1.29–1.36 (m, 1 H)	49.15	1.21–1.27 (<i>m</i> , 1 H)	57.19
	42.27		40.65
1.29–1.36 (m, 1 H)	19.95	1.17–1.23 (<i>m</i> , 1 H)	20.74
1.55–1.61 (<i>m</i> , 1 H)		1.39–1.44 (<i>m</i> , 1 H)	
1.71–1.78 (<i>m</i> , 1 H)	27.66	1.71–1.79 (<i>m</i> , 1 H)	27.59
1.38–1.43 (m, 1 H)		1.43–1.49 (<i>m</i> , 1 H)	
1.85–1.90 (m, 1 H)	44.62	1.85–1.90 (<i>m</i> , 1 H)	44.70
2.06–2.12 (m, 1 H)	48.99	2.11 (ddd, J = 10.9, 6.3, 2.5)	48.87
1.05 (d, J = 11.2)		1.03 (d, J = 10.8)	
2.00 (d, J = 14.2)	45.15	2.03 (d, J = 14.2)	44.94
1.20 (d, J = 14.2)		1.22 (d, J = 14.2)	
	84.34		84.37
3.70 (d, J = 10.5)	65.86	3.71 (dd, J = 10.5, 5.4)	65.79
3.53 (d, J = 10.5)		3.55 (dd, J = 10.5, 5.5)	
1.22(s)	28.22	1.36 (s)	26.54
1.27 (s)	34.10	1.43 (s)	32.15
1.06 (s)	19.80	1.11 (s)	17.40
		3.60(t, J=5.4)	
	2.36–2.41 (m, 1 H) 1.61–1.67 (m, 1 H) 2.53 (ddd, $J=15.4$, 11.5, 4.3) 2.18 (ddd, $J=15.4$, 10.6, 5.0) 1.42–1.52 (m, 1 H) 1.38–1.43 (m, 1 H) 1.42–1.52 (m, 1 H) 1.55–1.61 (m, 1 H) 1.29–1.36 (m, 1 H) 1.29–1.36 (m, 1 H) 1.55–1.61 (m, 1 H) 1.55–1.61 (m, 1 H) 1.55–1.61 (m, 1 H) 1.55–1.61 (m, 1 H) 1.38–1.43 (m, 1 H) 1.85–1.90 (m, 1 H) 1.05 (d, J=11.2) 2.00 (d, J=14.2) 1.20 (d, J=14.2) 1.20 (d, J=10.5) 3.53 (d, J=10.5) 1.22 (s) 1.27 (s) 1.06 (s) DCl ₃ at 500 MHz. ^b) Rec	2.36–2.41 (m, 1 H) 34.34 1.61–1.67 (m, 1 H) 2.53 (ddd, $J=15.4$, 29.12 11.5, 4.3) 2.18 (ddd, $J=15.4$, 29.12 1.15, 4.3) 2.18 (ddd, $J=15.4$, 10.6, 5.0) 175.93 75.51 1.42–1.52 (m, 1 H) 52.69 1.38–1.43 (m, 1 H) 25.06 1.42–1.52 (m, 1 H) 41.76 1.42–1.52 (m, 1 H) 41.76 1.42–1.52 (m, 1 H) 44.45 1.29–1.36 (m, 1 H) 49.15 42.27 1.29–1.36 (m, 1 H) 19.95 1.55–1.61 (m, 1 H) 42.766 1.38–1.43 (m, 1 H) 27.66 1.38–1.43 (m, 1 H) 44.62 2.06–2.12 (m, 1 H) 48.99 1.05 (d, $J=11.2$) 2.00 (d, $J=14.2$) 45.15 1.20 (d, $J=10.5$) 65.86 3.53 (d, $J=10.5$) 1.22 (s) 28.22 1.27 (s) 34.10 1.06 (s) 19.80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 3. ¹*H*- and ¹³*C*-*NMR* Data for Compounds **10–11**. δ in ppm, J in Hz.

(*Table 3*) established that **11** is the 5-epimer of **10**, *i.e.*, $(5\beta,15\alpha)$ -4,16,17-trihydroxy-3,4-secophyllocladan-3-oic acid.

The chemical shift changes of C(2), C(4), and C(9) in going from **10** to **11** were due to the different configuration at C(5). NOE Interactions were observed between H-C(9) at δ *ca.* 1.25 and Me(18) and Me(19) (δ 1.43, 1.36) of **11**, whereas cross-peaks were observed between H-C(9) at δ *ca.* 1.33 and H-C(5) at δ 1.45 in **10** (*Fig.* 2).

We thank the National University of Singapore for a grant (RP950603) for this research.

Experimental Part

General. All solvents used were of chemical grade (Shanghai Chemical Plant). TLC: precoated silicagel GF254 plates (Qingdao Haiyang Chemical Plant). Column chromatography (CC): silica gel (200–300 mesh), MCI Gel CHP20P (75–150 um; Mitsubishi Kasei Chemical Industries), C18 reversed-phase silica gel (20–45 um; Fuji Silysia Chemical Ltd.), Sephadex LH-20 (Pharmacia). Optical rotations: Perkin-Elmer-341 polarimeter. UV Spectra: Hewlett-Packard-8452A diode-array spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Bio-Rad-FTIR spectrophotometer, $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker-ACF-AMX-500 instrument; at 500 (¹H) and 125 MHz (¹³C), CDCl₃, (D₆)acetone, and (D₄)methanol solns. with SiMe₄ as an internal standard. EI-MS: Micromass-VG-7035 mass spectrometer at 70 Ev; in m/z.

Plant Material. The leaves of *Callicarpa furfuraceae* were collected from Mt. Tawai, Kinabatangan, Sabah, Malaysia, in 1998 and identified by *J. T. Pereira* and *L. Madani.* A voucher specimen SAN135178 was deposited at the herbarium of the *Forest Research Centre*, Sepilok, Sandakan, Sabah, Malaysia.

Extraction and Isolation. The leaves (900 g) of *C. furfuraceae* were extracted with hexane in a *Soxhlet* apparatus for three days. The extract was evaporated, the residue dissolved in acetone (50 ml), and the soln. filtered. The acetone-soluble portion (22 g) was then separated by CC (silica gel, hexane/AcOEt 1:0, 40:1, 20:1, 10:1, 5:1, 1:1, 1:2). *Fractions 1.1–1.7. Fr. 1.7* (4 g) was subjected to CC (*Sephadex LH-20*, EtOH): *Fr. 1.7.1–1.7.4. Fr. 1.7.3* was purified by CC (ODS, acetone/H₂O 9:1): **6** (16.0 mg) and **7** (4.0 mg).

The plant residue was reextracted with CHCl₃ in a *Soxhlet* apparatus for three days. The extract was evaporated and the residue dissolved in acetone (100 ml) and filtered. The acetone-soluble portion (40 g) was then separated by CC (silica gel, CHCl₃/MeOH 1:0, 50:1, 20:1, 10:1, and 5:1). *Fr.* 2.1–2.5. *Fr.* 2.2 was subjected to CC (polyamide, acetone/H₂O 8:2; ODS, acetone/H₂O 7:3: *Fr.* 2.2.1.–2.2.4. *Fr.* 2.2.2 was purified by CC (*Diol*, hexane/AcOEt 4:1): **1** (9.0 mg), **2** (12.3 mg), **3** (7.8 mg), and **5** (8.2 mg). *Fr.* 2.2.3 was also purified by CC (*Diol*, hexane/AcOEt 8:1): **12** (2.5 g) and **13** (253.2 mg). *Fr.* 2.3.2 was finally purified by CC (*Diol*, hexane/AcOEt 2:1): **4** (9.1 mg). *Fr.* 2.3.3 was separated by CC (*Diol*, hexane/AcOEt 4:1): **8** (4.2 mg), **10** (28.2 mg), **11** (21.1 mg), and **14** (693 mg). *Fr.* 2.4 was resubjected to CC (polyamide, acetone/H₂O 6:4): *Fr.* 2.4.1–2.4.4. Purification by CC of *Fr.* 2.4.3 (*Diol*, hexane/AcOEt 4:1) gave **9** (2.3 mg) and **14** (10.4 mg).

Sesamin-2-ol (=5-[(1S,3aR,4S,6aR)-4-(1,3-Benzodioxol-5-yl)-tetrahydro-1H,3H-furo[3,4-c]furan-1-yl]-1,3-benzodioxol-4-ol; 1): White amorphous powder. $[a]_D^{26,7} = -4.00$ (c = 0.090,CHCl₃). IR (KBr): 3018, 2937, 2850, 1605, 1517, 1442, 1365, 1251. ¹H- and ¹³C-NMR: *Table 1*. EI-MS: 370 (M^+), 352, 197, 125, 71, 43.

Sesamin-2,2'-diol (5,5'-[(1\$,3aR,4\$,6aR)-Tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis[1,3-benzodioxol-4-ol]; **2**): White amorphous powder. $[a]_{D}^{26.7} = +39.06$ (c = 0.064, CHCl₃). IR (KBr): 3018, 2966, 2856, 1612, 1515, 1465, 1363, 1269. ¹H- and ¹³C-NMR: Table 1. EI-MS: 386 (M^+), 368, 350, 337, 151, 53.

 (9α) -9-Methoxysesamin-2,2'-diol (5,5'-[(1S,3R,3aS,4S,6aR)-Tetrahydro-3-methoxy-IH,3H-furo[3,4-c]-furan-1,4-diyl]bis[1,3-benzodioxol-4-ol]; **3**). Oil. $[\alpha]_{26}^{26.7} = -38.97$ (c = 0.078, MeOH). IR (film): 3020, 2931, 1606, 1514, 1465, 1429, 1267, 1215. ¹H- and ¹³C-NMR: Table 1. EI-MS: 416 (M^+), 398, 329, 189, 162, 77, 53.

Phylloclad-15-ene-3,17-dione (=(5*α*,9*α*,10*β*)-*Kaur-15-ene-3,17-dione*; **7**): Oil. $[α]_D^{27.1} = +1.55$ (*c*=0.040, CHCl₃). IR (film): 1698, 1655, 1457, 1262, 1100, 1024. UV (MeOH): 214 (3.20), 232 (3.32). ¹H- and ¹³C-NMR: *Table 2*. EI-MS: 300 (*M*⁺), 268, 215, 123, 69, 43.

 $(3\beta,16\alpha)$ -3-Hydroxyphyllocladan-17-oic Acid (= $(3\beta,5\alpha,9\alpha,10\beta,16\alpha)$ -3-Hydroxykauran-17-oic Acid; 8): White amorphous powder. $[\alpha]_{0}^{26.7} = -5.95$ (c = 0.042, MeOH). IR (KBr): 3426, 3000–2500 (br.), 1690, 1459, 1414, 1207, 1177, 1034, 1013. ¹H- and ¹³C-NMR: *Table 2*. EI-MS: 320 (M^+), 302, 287, 233, 136, 121, 41.

(16a)-16,17,18-Trihydroxyphyllocladan-3-one (=(4α , 5α , 9α , 10β , 16α)-16,17,18-Trihydroxykauran-3-one; **9**): White amorphous powder. [α]_D^{26,7}=+29.13 (c= 0.023, MeOH). IR (KBr): 3509, 3434, 3288, 1703, 1459, 1051. ¹H- and ¹³C-NMR: Table 2. EI-MS: 336 (M^+), 318, 305, 275, 231, 151, 107, 55, 44.

(16a)-4,16,17-Trihydroxy-3,4-secophyllocladan-3-oic Acid (= (1R,2R,4aS,6R,7S,9aS)-Decahydro-6-hydroxy-6-(hydroxymethyl)-2-(1-hydroxy-1-methylethyl)-1-methyl-4a,7-methano-4aH-benzocyclohep-

Helvetica Chimica Acta - Vol. 89 (2006)

tene-1-propanoic Acid; **10**): White amorphous powder. $[\alpha]_D^{26.7} = +14.15$ (c = 0.282, MeOH). IR (KBr): 3504, 3413, 3000–2500 (br.), 1719, 1644, 1462, 1410, 1385, 1311, 1213, 1038. ¹H- and ¹³C-NMR: *Table 3*.

 $(5\beta,16\alpha)$ -4,16,17-Trihydroxy-3,4-seco-phyllocladan-3-oic Acid (= (1R,2S,4aS,6R,7S,9aS)-Decahydro-6-hydroxy-6-(hydroxymethyl)-2-(1-hydroxy-1-methylethyl)-1-methyl-4a,7-methano-4aH-benzocycloheptene-1-propanoic Acid; **11**): White amorphous powder. [α]_D^{26,7} = +49.62 (c =0.211, MeOH). IR (KBr): 3413, 3000–2500 (br.), 1715, 1686, 1657, 1455, 1371, 1113, 1038. ¹H- and ¹³C-NMR: Table 3.

REFERENCES

- [1] R. S. Chen, J. S. Lai, T. S. Wu, J. Chin. Chem. Soc. 1986, 33, 329.
- [2] C. Nishino, K. Kawazu, T. Mitsui, Tetrahedron Lett. 1971, 1541.
- [3] K. Kawazu, M. Inaba, T. Mitsui, Agric. Biol. Chem. 1967, 31, 494.
- [4] L. M. Perry, J. Metzger, 'Medicinal Plants of East and Southeast Asia', MIT Press, Cambridge, 1980.
- [5] S. F. Fonseca, J. D. P. Kampello, L. E. S. Barata, E. A. Reveda, Phytochemistry 1978, 17, 499.
- [6] P. Andrew, S. W. Robert, *Tetrahedron* 1976, 32, 2783; S. C. Roy, K. K. Rana, C. Guin, J. Org. Chem. 2002, 67, 3242.
- [7] A. B. Anderson, R. McCrindle, J. K. Tumbull, Can. J. Chem. 1975, 53, 1181.
- [8] P. K. Agrawal, A. K. Singh, R. S. Bhakuni, Indian J. Chem., Sect. B 1996, 35, 803.
- [9] P. K. Agrawal, V. Bishnoi, A. K. Singh, Phytochemistry 1995, 39, 929.

Received July 18, 2005